Transmission electron microscope observation of organic–inorganic hybrid thin active layers of light-emitting diodes

نویسندگان

  • Yusuke Jitsui
  • Naoki Ohtani
چکیده

We performed transmission electron microscope (TEM) observation of organic-inorganic hybrid thin films fabricated by the sol-gel reaction and used as the active layers of organic light-emitting diodes. The cross-sectional TEM images show that the films consist of a triple-layer structure. To evaluate the composition of these layers, the distribution of atoms in them was measured by energy-dispersive X-ray fluorescence spectroscopy. As a result, most of the organic emissive material, poly(9,9-dioctyl-fluorene-co-N-4-butylphenyl-diphenylamine (TFB), was found to be distributed in the middle layer sandwiched by SiO and SiO2 layers. The surface SiO layer was fabricated due to the lack of oxygen. This means that the best sol-gel condition was changed due to the TFB doping; thus, the novel best condition should be found.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thin-film Encapsulation of Organic Light-Emitting Diodes Using Single and Multilayer Structures of MgF2, YF3 and ZnS

In this research, the lifetime of green organic light emitting diodes (OLEDs) is studied using four passivation layers. To encapsulate the OLEDs, MgF2, YF3, composed of alternating MgF2/ZnS and YF3/ZnS layers were grown by thermal vacuum deposition. Measurements show that the device lifetime is significantly improved by using YF3 and ZnS as passivation layers. However, diodes encapsulated by Mg...

متن کامل

Thin film encapsulation for organic light-emitting diodes using inorganic/organic hybrid layers by atomic layer deposition

A hybrid nanolaminates consisting of Al2O3/ZrO2/alucone (aluminum alkoxides with carbon-containing backbones) grown by atomic layer deposition (ALD) were reported for an encapsulation of organic light-emitting diodes (OLEDs). The electrical Ca test in this study was designed to measure the water vapor transmission rate (WVTR) of nanolaminates. We found that moisture barrier performance was impr...

متن کامل

Multilayer thin film encapsulation for organic light emitting diodes

A transparent and effective thin film encapsulation (TFE) based on a multilayer structure is demonstrated. Alternate films of amorphous and crystalline film forming organic materials have been investigated to create complicated diffusion pathways for oxygen and water vapour, which was reflected in their increased barrier properties. These layers are further protected by an inorganic barrier coa...

متن کامل

Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes

Zinc oxide (ZnO) with its deep level defect emission covering the whole visible spectrum holds promise for the development of intrinsic white lighting sources with no need of using phosphors for light conversion. ZnO nanorods grown on flexible plastic as substrate using a low temperature approach (down to 50 o C) were combined with different organic semiconductors to form hybrid junction. White...

متن کامل

A flexible transparent gas barrier film employing the method of mixing ALD/MLD-grown Al2O3 and alucone layers

Atomic layer deposition (ALD) has been widely reported as a novel method for thin film encapsulation (TFE) of organic light-emitting diodes and organic photovoltaic cells. Both organic and inorganic thin films can be deposited by ALD with a variety of precursors. In this work, the performances of Al2O3 thin films and Al2O3/alucone hybrid films have been investigated. The samples with a 50 nm Al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012